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A Response to Ousterhout's Critique of LFS
Measurements

John Ousterhout has posted a web page questioning measurements in the 1995 Usenix paper Logging versus
Clustering: A Performance Evaluation This page responds to the issues raised by Ousterhout.

e Qusterhout references "a number of flaws in the earlier paper" (the 1993 Usenix paper A Log-Structured
File System for UNIX), but does not detail these flaws. To date, we are aware of no technical inaccuracies
in the paper.

¢ Ousterhout cannot explain the measurements in Section 4, stating that they are inconsistent with the
simulated results in the Rosenblum/Ousterhout paper that appeared in the February 1992 ACM
Transactions on Computer Systems. The simulated results in the TOCS paper are for a different algorithm
and different parameters than used by either Sprite-LFS or BSD-LFS. This is explained in more detail
below.

e The optimization, suggested by Ousterhout, to improve the transaction processing performance has not yet
been implemented. This optimization affects the ability of the file system buffer cache to cache dirty data,
and the evaluation of its impact is beyond the scope of the 1995 Usenix paper. We agree that this work
will be interesting and encourage Ousterhout to pursue this research avenue.

e Ousterhout claims that the results in Section 5 are invalid. We present even more data below that
demonstrates that the results in Section 5 are indicative of real-world performance.

A Clarification of the 1993 Usenix Paper

There is one graph that, while not incorrect, is only partially explained in the paper. Figure 9 on page 320 depicts
the write performance of BSD-LFS, BSD-FFS and the raw disk on a benchmark that synchronously writes data
to disk. In the paper, this difference is attributed to the fact that FFS begins asynchronously writing blocks to
disk as soon as they are filled, but LFS delays writes until approximately 800 KB of data have accumulated. This
phenomenon does account for part of the performance gap, but a second phenomenon also contributes. The
maximum transfer unit between memory and the disk is 56 KB. The FFS places a rotational delay between 56
KB units; LFS does not. Therefore, when data is being written to disk, LFS loses a rotation between 56 KB
writes while FFS loses only a rotdelay (approximately 1/4 revolution).

Section 4 Cleaner Measurements

Ousterhout's questions about the measurements in Section 4 stem from the following misinterpretation of the
results presented in the Rosenblum/Ousterhout paper in ACM Transactions on Computer Systems, February
1992 (hereafter referred to as the TOCS paper).

o The simulated results presented in Figure 4 of the TOCS paper are for the greedy cleaning algorithm. This
is not the cleaning algorithm implemented in either Sprite-LFS or BSD-LFS, and therefore the results of
the simulation do not apply.

e The results presented in the TOCS paper are for a single file system size, segment size, and cleaning
cluster size (the number of segments cleaned per cleaner invocation). None of these parameters is the
same for the system measured in the 1995 Usenix paper or for the Sprite-LFS system measured in the
TOCS paper. All of these parameters affect performance.
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e The cost-benefit calculation discussed in the text of the TOCS paper is different than that used in the
simulation (the one described in the text is the one used in both Sprite-LFS and BSD-LFS).

e The age metric used in the cost-benefit simulation is different than the age metric used in either Sprite-
LFS or BSD-LFS.

These four misunderstandings render Ousterhout's comparisons questionable.

The TOCS paper discusses two cleaning algorithms. The first is the greedy algorithm, which always cleans the
segment(s) with the lowest utilization. This is the algorithm simulated to produce the results in Figure 4 of the
TOCS paper. The paper then goes on to explain that the greedy algorithm is sub-optimal for workloads that show
skewed distributions. This observation leads to the second algorithm: cost-benefit. The cost-benefit algorithm
uses a combination of segment utilization and segment age to select segments for cleaning.

What the TOCS paper fails to discuss is the selection of the age metric in the cost-benefit algorithm. The TOCS
paper presents simulated results of a log-structured file system. An examination of the simulator that we believe
was used to derive these results reveals that the simulated file system measures age in terms of the number of
blocks that have been written. The calculation of the cost-benefit metric uses the log of the number of writes
since a segment was created. Therefore, the age metric grows slowly. For example, on a 1 GB file system with a
1 MB segment and 4 KB blocks, the maximum age possible after filling the file system the first time is 18. A
segment that survives another writing of the complete disk (all but one of the 1024 segments) will have an age of
19.

In contrast to this simulated cleaning algorithm, both Sprite-LFS and BSD-LFS use elapsed time as the measure
of segment age. The age of a segment is the age of the segment's newest file. In the cost-benefit calculation,
Sprite-LFS expresses the age in minutes while BSD-LFS expresses the age in seconds. In both cases, the
selection of segments is affected by the write rate of the application and the number of segments in the file
system. For example, consider the 1 GB file system described above. On BSD-LFS, the first segment written on
a pass over the entire file system will have an age of 613 for the first pass and will grow to 1226 for the second
pass. On Sprite-LFS, the age will be 10 for the first pass and 20 for the second pass.

Our measurements show that when the disk is 50% full, the average segment utilization is 48%, not the 25% or
33% expected by Ousterhout. In our measurements for TPC/B, we increase the fullness of the file system by
creating a large file that is never accessed. In effect, this reduces the size of the file system and reduces the
impact of the age metric, because segments are recycled more quickly. The effects of the age metric were never
addressed in the TOCS paper. These effects are subtle and not yet well-understood. We believe that these effects
warrant further investigation that is beyond the scope of the 1995 Usenix paper.

Cleaning Optimization

Ousterhout proposes keeping indirect blocks in the cache when a file's data blocks are written. This is not an
unreasonable suggestion. However, retaining indirect blocks is more complicated than Ousterhout suggests.

First, Ousterhout ignores the fact that periodically, during checkpoint, indirect blocks must be written to allow
file system recovery. Indirect blocks can be reconstructed by rolling forward after a crash. However, there must
be a consistent snapshot from which to begin the roll forward process. When segments are cleaned, they cannot
be rolled forward. Therefore, the only segments eligible for cleaning are those written before the most recent
checkpoint.

Second, normal cache replacement in 4BSD depends on the fact that the file system can evict a dirty buffer from
the cache at any time. In LFS, this is not true. The creation and writing of a segment requires the use of
additional buffers to store segment meta-data such as segment summaries and inode blocks. This has two main
effects on buffer cache management. Dirty LFS blocks cannot be kept on the normal LRU queue and segment
writes must be initiated before there is danger of running out of buffers. This is discussed in more detail in
Section 4.1.2 of the 1993 Usenix paper.
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Retaining dirty indirect blocks in the cache will reduce the effective size of the buffer cache, penalizing all files
being served by the LFS. Although this modification might improve performance of the transaction processing
benchmark, the effects on other workloads is unknown, and it is of questionable value to modify an algorithm to
improve the performance of one benchmark, potentially at the expense of others. For example, we have
modifications to the FFS that substantially improve the performance of the create benchmarks in Sections 3 and
5. However, since we do not yet understand the long term ramifications of these modifications, we did not
include them in this study.

FFS Fragmentation: Section 5 Results

The benchmark used in Section 5 is a slight modification of that used in Section 3. The benchmark, designed by
John Ousterhout, creates, reads, writes, and deletes a large number of files and gathers data for a wide range of
file sizes. In Section 3, the benchmark places 100 files in each directory while in Section 5, we place only 25
files in each directory and report results only for reading and creating.

The purpose of Section 5 is to examine how effectively the Fast File System can allocate files as a file system
ages. In order for FFS to achieve the performance shown in Section 3, it must succeed in allocating blocks
contiguously on disk. As files are created and deleted, the free space on a file system could become sufficiently
fragmented that FFS would be unable to allocate files contiguously. We evaluate the performance over time by
running the same benchmark on recreations of old file systems (in particular, in the Usenix paper, we show the
performance for 4 points in time over the past year).

Ousterhout has two complaints with this methodology. First, he believes that since the files are created all at
once, they will exhibit different characteristics than files created under normal use. Second, he does not
understand why our measurements show degradation in performance for files of 8 KB since these files inhabit
only a single block.

Let's begin with the second point, since it is trivial to explain. The create test of an 8 KB file involves three
writes: the new inode, the directory in which the file is being added, and the data block. In the "empty disk" case
(i.e. running the benchmark on a newly created file system), the directory and the 25 files contained in it are
allocated contiguously from the beginning of the cylinder group. During the benchmark, the inodes and the
modified directory are written synchronously. The data is written asynchronously but is scheduled before the
next create begins. Therefore, the disk head seeks back and forth between the inode area and the first data
cylinder in the cylinder group.

When the benchmark is run on the recreated file system there is no guarantee that either the directory or any of
the files appear at the beginning of the cylinder group. Therefore the seeks between the inode area and the data
blocks of the directory and new files are likely to be longer. These longer seeks lead to lower performance.

Read performance is substantially better than write performance as multiple files are in the disk's track buffer
after the first file is accessed. However, read performance can also degrade on an older file system. Since the
files are not allocated contiguously, there is less benefit from the track buffers, and performance suffers.

Ousterhout's first criticism of the benchmark makes reference to our ongoing research in file layout
characterization. The reference to which Ousterhout refers is File Layout and File System Performance. In this
report, we define a layout score that indicates what fraction of a file's blocks are allocated optimally. A file that is
allocated optimally (contiguously) has a layout score of 1.0 and a file with no two blocks contiguous has a
layout score of 0.0. Consider a four-block file. We assume that a seek is always required to access the first block
of a file and use only the remaining blocks in the layout score calculation. In the case of our four-block file, let's
say that the first two blocks are contiguous and the last two blocks are contiguous, but a seek is required between
the second and third blocks. There are a total of three blocks considered in the layout score. Of those, 2 are
allocated optimally (the second and fourth) while one (the third) is not. This yields a layout score of 0.67.
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Our research shows that layout score is a moderate indicator of performance (its linear regression coefficient is
0.7, indicating that the layout score is responsible for approximately 50% of the variance in performance we
see). The other component is the length of the seek/rotation required between blocks that are not allocated
contiguously. Layout score does not model this.

Ousterhout states that information about layout scores was present in earlier drafts of the paper but has been
omitted from the final paper. This is true. At the time of submission, we did not yet have a tool that permitted
reconstruction of a file system from a snapshot. We now have this tool. Rather than provide an abstract score that
only partially explains performance, we provide actual measured performance in the final paper. The detailed
discussion of layout scores appears in the File Layout and File System Performance technical report.

To address Ousterhout's concern over the validity of the results, we calculated the layout scores for the 64 KB
files created by the benchmark and then calculated the layout score for the 64 KB files on the recreated file
system before the benchmark. We refer to these two sets of files as the benchmark files and the old files
respectively. In most cases, the layout scores of the benchmark files was better than that of the old files, while in
one case it was actually worse.

The table below shows the six file systems analyzed in the Usenix paper. For each file system, we show three
snapshot dates and the layout scores for the benchmark files and the old files. The fifth column shows the
difference in layout score between the two sets of files. Using the layout score of the old files and the equations
derived from linear regression of layout score versus performance, we show a predicted read/write performance.
Then we show the actual performance that we measured on the benchmark files.

LAYOUT SCORES RELATIVE PERFORMANCE
as a fraction of empty fs perf.
File date bench  old diff Pred Actual Pred Actual
system layout layout read read write write

cnews 26Apr94 0.88 0.23 0.65 0.70 0.98 0.63 0.91
cnews 26Jul94 0.84 0.14 0.69 0.67 0.97 0.58 0.91
cnews 200ct94 0.78 0.15 0.62 0.67 0.94 0.59 0.86

glan5 26Apr94 0.89 0.94 -0.05 0.99 0.97 0.94 0.88
glan5 26Jul94 0.89 0.95 -0.06 0.99 0.96 0.95 0.86
glan5 290ct94 0.88 0.96 -0.08 0.99 0.96 0.96 0.89
staff 26Apro94 0.70 0.57 0.13 0.84 0.89 0.71 0.79
staff 26Jul94 0.69 0.55 0.14 0.83 0.88 0.69 0.76
staff 200ct94 0.69 0.62 0.07 0.86 0.89 0.74 0.85

usr4 26Apro4 0.95 0.82 0.13 0.93 0.98 0.83 0.91
usr4 26Jul94 0.85 0.83 0.02 0.93 0.96 0.84 0.92
usr4 290ct94 0.85 0.84 0.00 0.94 0.92 0.85 0.80

usré 26Apr94 0.75 0.55 .20 0.88 0.92 0.74 0.87
usré 26Jul94 0.69 .59 .10 0.88 0.92 0.77 0.85
usré 290ct94 0.74 0.60 0.14 0.88 0.92 0.77 0.82

(O]

()
(O]

white 26Apro4 0.83 0.79 0.04 0.91 0.90 0.81 0.80
white 26Jul94 0.87 0.71 0.15 0.86 0.98 0.71 0.93
white 290ct94 0.88 0.55 0.34 0.77 0.98 0.53 0.91

The data shows that the benchmark files have worse layout scores than old files on one file system and better
layout scores on the other five file systems. On those five file systems the difference in layout score produces
differences between predicted and actual read performance that are typically less than 5%. For writes, the
difference between predicted and actual performance is typically less than 10%. Even using the predicted
numbers, in most cases, read performance over the one year period is at least 85% of the best performance and
write performance is at least 75% of the best performance.
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This analysis is not perfect in that the regression equations were derived from the measured numbers and may
not be correct for the files that exist in the file system prior to the benchmark. The only other option would be to
select a random set of files to read/write. It is unclear that this provides a better metric. The real question is for a
given file system configuration, how fragmented are the files that are actually accessed. A trace-drive study is
probably the next step in this particular examination.
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